Connecting active to passive fluorescence with photosynthesis: a method for evaluating remote sensing measurements of Chl fluorescence.

نویسندگان

  • Troy S Magney
  • Christian Frankenberg
  • Joshua B Fisher
  • Ying Sun
  • Gretchen B North
  • Thomas S Davis
  • Ari Kornfeld
  • Katharina Siebke
چکیده

Recent advances in the retrieval of Chl fluorescence from space using passive methods (solar-induced Chl fluorescence, SIF) promise improved mapping of plant photosynthesis globally. However, unresolved issues related to the spatial, spectral, and temporal dynamics of vegetation fluorescence complicate our ability to interpret SIF measurements. We developed an instrument to measure leaf-level gas exchange simultaneously with pulse-amplitude modulation (PAM) and spectrally resolved fluorescence over the same field of view - allowing us to investigate the relationships between active and passive fluorescence with photosynthesis. Strongly correlated, slope-dependent relationships were observed between measured spectra across all wavelengths (Fλ , 670-850 nm) and PAM fluorescence parameters under a range of actinic light intensities (steady-state fluorescence yields, Ft ) and saturation pulses (maximal fluorescence yields, Fm ). Our results suggest that this method can accurately reproduce the full Chl emission spectra - capturing the spectral dynamics associated with changes in the yields of fluorescence, photochemical (ΦPSII), and nonphotochemical quenching (NPQ). We discuss how this method may establish a link between photosynthetic capacity and the mechanistic drivers of wavelength-specific fluorescence emission during changes in environmental conditions (light, temperature, humidity). Our emphasis is on future research directions linking spectral fluorescence to photosynthesis, ΦPSII, and NPQ.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diurnal Cycle Relationships between Passive Fluorescence, PRI and NPQ of Vegetation in a Controlled Stress Experiment

In order to estimate vegetation photosynthesis from remote sensing observations; some critical parameters need to be quantified. From all absorbed light; the plant needs to release any excess that is not used for photosynthesis; by non-photochemical quenching; by fluorescence emission and unregulated thermal dissipation. Non-photochemical quenching (NPQ) processes are controlled photoprotective...

متن کامل

The impacts of TRR14 over-expression on Arabidopsis thaliana growth and some photosynthetic parameters

Background: TRR14 protein is a small member of a multi-gene family in Arabidopsis and is the first ones found during screening of seedlings for their resistant to the trehalose sugar.Objectives: Characterization ofTRR14 over-expressed plants with respect to morphological changes, growth and photosynthesis related parameters.Materials and methods: TRR14gene was isolated from Arabidop...

متن کامل

A Comparison between Local and Global Spaceborne Chlorophyll Indices in the St. Lawrence Estuary

Spaceborne chlorophyll indices based on red fluorescence (wavelength = 680 nm) and water leaving radiance (Lw) in the visible spectrum (i.e., 400–700 nm) were evaluated in the St Lawrence Estuary (SLE) during September of 2011. Relationships between chlorophyll concentration (chl) and fluorescence were constructed based on fluorescence line height (FLH) measurements derived from a compact laser...

متن کامل

A new instrument for passive remote sensing 1. Measurements of sunlight-induced chlorophyll fluorescence

Under natural sunlight illumination, the chlorophyll fluorescence emitted by the vegetation represents less than 3% of the reflected light in the near infrared part of the spectrum. This small amount is difficult to quantify except at certain wavelengths, where the solar spectrum is attenuated (Fraunhofer lines). An instrument measuring the in-filling of the atmospheric oxygen absorption band a...

متن کامل

Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges.

Chlorophyll a fluorescence (ChlF) has been used for decades to study the organization, functioning, and physiology of photosynthesis at the leaf and subcellular levels. ChlF is now measurable from remote sensing platforms. This provides a new optical means to track photosynthesis and gross primary productivity of terrestrial ecosystems. Importantly, the spatiotemporal and methodological context...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The New phytologist

دوره 215 4  شماره 

صفحات  -

تاریخ انتشار 2017